ESCRS - IOL power calculation ;
ESCRS - IOL power calculation ;

IOL power calculation

Ray tracing method offers several potential advantages

IOL power calculation
Leigh Spielberg
Leigh Spielberg
Published: Friday, December 1, 2017
Nino Hirnschall MD, PhD
Using a ray tracing approach for IOL power calculation offers several important potential advantages over conventional approaches, reported Nino Hirnschall MD, PhD, Vienna Institute for Research in Ocular Surgery, Austria, at the XXXV Congress of the ESCRS in Lisbon, Portugal. “There are two potential advantages of a ray tracing-based IOL power calculation. First, more individual IOL power calculation is possible, for example in eyes with irregular cornea or those eyes who have previously undergone refractive surgery. Second, because it is a purely physical approach, no empirical ‘optimisation’ is required,” said Dr Hirnschall, referring to formula adjustments required for each surgeon. He presented the results of a study comparing the spherical equivalent outcomes of ray tracing-based IOL power calculation, using exact IOL design information, with the outcomes of a triple-optimised Haigis formula. The prospective study of 49 eyes of 49 patients used the IOLMaster 700 individualised eye model data, a physical lens position predictor and exact CT Asphina 409 MP IOL design information. “Ray tracing offers more detailed information of the cornea, as well as anatomical data instead of estimated lens position, both of which lead to a better refractive outcome,” said Dr Hirnschall. A potential limitation of the method is that exact IOL design information is needed Ray tracing resulted in a 2.5% increase in outcomes within 0.5D and 0.75D of target refraction, and a 10% increase in those coming within 1.00D. Prediction errors larger than 1.00D away from target refraction were lower in the ray tracing group (n=2) than in the Haigis group (n=13). “This shows promise not only for outcome performance, but also for surgeon and patient education, as well as management of patient expectations,” he concluded. Ray tracing involves calculating the path of a single “ray” of light passing through an optical system. In this case, retrospective ray tracing-based IOL power calculation was performed using retinal image quality metric (RIQM) criteria in an iterative procedure, and retinal image simulations were performed. In the ray tracing-based method, IOL selection is based on predicted visual acuity and a neuronal weighted RIQM. It involves ssOCT-based biometry and keratometry, using anterior and posterior corneal surfaces, corneal thickness, axial length, anterior chamber depth and white-to-white distance. Nino Hirnschall: nino.hirnschall@gmail.com
Latest Articles
From Lab to Life: Corneal Repair Goes Cellular

Long-awaited cellular therapies for corneal endothelial disease enter the clinic.

Read more...

Balancing Innovation and Safety

Ensuring access to advanced cell therapies amid regulatory overhaul.

Read more...

With Eyes on Its Future, ESCRS Celebrates Its Past

Winter Meeting offers opportunities to experiment with new concepts and formats.

Read more...

Best of ESCRS Winter Meeting 2024

Read more...

Following the New Generation

EDOF IOLs an option for eyes with mild comorbidities, showing potential in mini-monovision strategies.

Read more...

Refocus on Multifocals

Trifocal IOLs continue to improve as consensus grows regarding indications and contraindications.

Read more...

Common Myths in Presbyopia Correction

Patient education key to satisfaction with refractive IOLs.

Read more...

Reversible Multifocality

Two-lens combination offers low-risk spectacle independence for cataract patients and presbyopes.

Read more...

Managing a Cataract Surgery Refractive Miss

Weighing the pros and cons of options for intraocular intervention.

Read more...

Unleashing OCT’s Full Potential

Performance of newest tool for corneal evaluation meets or beats older standard technologies.

Read more...

;